
CIS 455/555: Internet and Web Systems
Spring 2010

Team Project Specifications

“Code Complete” Deadline: May 3, 2010
Final Report Deadline: May 11, 2010, 6PM

For the term project, you will be building a peer-to-peer Web indexer/crawler and

analyzing it with respect to its performance. This will involve several components, each

of which is loosely coupled with the others:

 Crawler

 Indexer/TF-IDF Retrieval Engine

 PageRank

 Search Engine and User Interface

 Experimental Analysis and Final Report

More details on each component are provided below. The project is relatively open-

ended and includes many possibilities for extra credit. However, you are strongly

encouraged to get the basic functionality working first.

Suggested approach: Spend some time early coordinating with your group-mates and

deciding which modules from your previous homework assignments are “best of breed.”

Designate one person to be responsible for each task.

Make sure adequate time is spent defining interfaces between components (in this case,

appropriate interfaces might be Pastry messages, Web service calls, and perhaps common

index structures), and also plan to spend significant time integrating. Consider the use of

automated tools for building your project (ant) and version control (cvs or svn; see

http://www.seas.upenn.edu/cets/answers/subversion.html).

Note that the report includes a non-trivial evaluation component.

You should make use of (1) the spec cluster for debugging and development, (2)

subversion for sharing your work, (3) JUnit tests for validating that the code works (or

remains working), (4) Amazon EC2 to evaluate your system.

Crawler
The Web crawler should build upon your past homework assignments, and it should be

able to parse typical HTML documents. It should check for and respect the restrictions in

robots.txt and be well-behaved in terms of concurrently requesting at most one

document per hostname. Requests should be distributed, Mercator-style, across multiple

http://www.seas.upenn.edu/cets/answers/subversion.html

crawling peers built over Pastry. The crawler should track visited pages and not index a

page more than once.

Extra credit: Add support for digests to detect when the same document has been

visited more than once. If so, the document should only be stored once – but two “hits”

should be returned.

Indexer
The indexer should take words and other information from the crawler and create a

lexicon, inverted index, and any other necessary structures for returning weighted

answers making use of TF/IDF, proximity, and any other ranking features that are

appropriate. It should be able to store data persistently across multiple nodes, using

Pastry and BerkeleyDB.

Extra credit: Include document and word metadata that might be useful in creating

improved rankings (e.g., the context of the words).

Extra credit: Make the indexing system restartable with a different number of peers.

The simplest way to do this is to have a procedure where, at startup, each node with an

existing BerkeleyDB index will (1) rename it, (2) create a new index file, and (3) scan

through each entry in the old index file and PUT it into the DHT.

PageRank
Given information from crawling, you should perform link analysis using the PageRank

algorithm, as discussed in class and in the Google PageRank paper.

Your implementation should make use of MapReduce to do the analysis. There are many

ways of doing a distributed PageRank. A very simple one is described here:

http://www.cs.toronto.edu/~jasper/PageRankForMapReduceSmall.pdf

Extra credit. Other papers have slightly different approaches to distributed PageRank;

you might consult these for alternative ideas.

http://www.cs.utexas.edu/users/simha/publications/distributedpagerank.pdf

http://wwwcsif.cs.ucdavis.edu/~yeshao/cikm05.pdf

Extra credit will be given for a performance comparison between different approaches.

Search Engine and User Interface
This component is fairly self-explanatory, as the goal is to provide a search form and

results list. One aspect that will take some experimentation is determining how much to

weight each item (PageRank, TF/IDF, other word features).

http://www.cs.toronto.edu/~jasper/PageRankForMapReduceSmall.pdf
http://www.cs.utexas.edu/users/simha/publications/distributedpagerank.pdf
http://wwwcsif.cs.ucdavis.edu/~yeshao/cikm05.pdf

Extra credit: Integrate Yahoo search results into your keyword listings, using the REST

interfaces. A challenge here is how to interleave ranked results.

Extra credit: Integrate Amazon search results into your keyword listings, using the

REST or SOAP interfaces. A challenge here is how to interleave ranked results,

especially given that some topics may be more or less suited to Amazon.

Extra credit: Implement a simple Google-style spell-check: for words with few hits, try

simple edits to the word (e.g., adding, removing, transposing characters) and see if a

much more popular word is “nearby.”

Extra credit: Consider adding AJAX (Asynchronous Javascript And XML) support to

your search interface, so users can provide feedback about which entries are “good” or

“bad,” and use these to re-rank the results.

Experimental Analysis and Final Report
Building a Web system is clearly a very important and challenging task, but equally

important is being able to convince others (your managers, instructors, peers) that you

succeeded. We would like you to actually evaluate the performance of your methods, for

instance relative to scalability.

For evaluation, you should log into multiple Amazon EC2 nodes and run the system.

One approach is to use the system with one, two, up to n peers (where n is, say, 10 EC2

nodes), and compare overall response or completion time. This can be done for crawling

and for query answering. For the latter, you can write a simple query generating tool that

poses many queries at once, and compare response time. What is the maximum number

of concurrent requests you can reasonably handle, when varying the number of nodes?

Can you separate out the overhead of the different components (including network

traffic)?

Your final report should include at least:

 Introduction: project goals, high-level approach, and division of labor

 Project architecture

 Implementation: non-trivial details

 Evaluation

 Conclusions

Note that the quality of the report will have substantial bearing on your grade: it is not

simply something to be cobbled together at the last second!

